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RESPONSE OF A ROTATING PROPELLER
TO ARRODYNAMIC EXCTTATION®

By Walbter E. Arnoldl
SUMMARY

The flexural vibration of a rotating propeller blade with clamped
shank is analyzed with the objéct of presenting, In matrix form, equations
for the dlastlic bending momente In forced vibration resulting from aeroc—
dynamic forces applled at a flxed mmltiple of rotatlonal speed. Matrix
equatlons are also derlved which define the crilitlcal speeds and mode
shapes for any excltatlon order snd the relation between critilcal speed
and blade engle. Reference 1s given to staendard works on the numsrical
solution of matrix equations of the forms derived.

The use of a segmented blade as &n approximation to a contlinucus
blade provides a simple means for obtalning the matrix solution from the
integral equation of equilibrium, so that, In the numerical application
of the method presented, the several mabtrix arrsys of the baslc physilcal
characterlstics of the propelier blade are of slmple form, arnd their
simplicity 1s preserved until, wlith the sclubtion in sight, nmumerilcal
manipulations well—dmown in matrix algebra yleld the deslred critical
speeds and mode shapes from which the vibratlon at any operating condition
may be synthesized.

A close correspondence between the famlllsr Stodola method and the
metrix method is polnted out, lhdlcatling that sny features of novelty
are characteristic not of the anslyticel procedure but only of the
ebbreviatlion, condensatiom, and efficlent organization of the numerical
procedurse made possible by the use of classlceal matrix theory.

INTRODUCTION

This report presents a theoretlcal analysls of the flexural vibra—
tion of an alrcraft propeller blade subJected to harmonic asrodynamic
exciting forces at a fixed midltiple of propelier rotatlional frequency.

*This report 1s a reproduction of Hemilton Standard Propellers?
report No. HSP-613, of December 11, 1947, wlth scme slight
modifications to conform more nearly to NACA form.
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TRESTRECTED.
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Most direct practical application ig found in the calculation of responae
to rotational frequency excltatlan below the first mode resonent frequency,
but the asnalysils also provides a means for studying critical speeds at
any frequency order. However, since current interest is cemtered on the
former applicatlon, cgupling of blade bending and torsion 1s neglected as
being of l1little lmportance when operating far below the first torsional
natural frequency, and dempling is likewlgs ignored. Initial offset and
sweep are also neglected, although thelr effecta cannot be dismissed as

& generallty. ' :

The propeller blade In this snelysie is clemped at the shank, that
1s, constrained ec that at some fixed location near the center of rotatlon
only uniform rotatlonsl motion 1s possible. This candition of end fixity
is chosen 1n accordance with the obJect of applying the results of the
snalysis to the particular case of vibraﬁ}on in response to alr strean
angularity, where a propeller of three or more bladee vibrates in an
unsymmetrical mode which fulfills thls condition. The "reactionless modes"
occcurring in propellers cof four or more blades are alsc covered by this
boundary conditlion. The system 1s furthermore assumed to be linear,
with small vibratory dlsplacements, and simple bendlng theory 1s used,
since the twlst in comventlonal propellsr blade designs 1s moderats.

The differential equations of equilibrium are first derived and
transformed Into Integral equations, and they are then examined 1n the
form of a matrix equation for a segmented blade, which permits the
evaluation of vlibratory response, critical speeds, snd normasl modes by
simple classical methods which are particularly attractive because the
solution in numerical form followa the symbolic form very closely.

PHTT.OSOPHY OF ANATYSTS

Tt must be recognized at the outset that the mathematlical description
of the vibration of a twilsted, rotating, tapered beam, subJected to
digtributed vibratory loading, is essentially a complicated process, ani
that care must be taken to avoid deallng with expressicns so cumbersome
and involved in notetlon that the physical meanings of the wvarious terms
sre completely hidden. The analysls here presented attempts to avold
guch difficultles by using the concige abbreviations provided by simple
matrix algebra, setting up matrix srreys of physical quantities wherever
possible, and separating the operations of Integraticn and differentiatlion
from the physical quantities by the use of operational symbols in matrix
form. It is thue possible to avold writing large arrays of simultaneous
equationg, replete with multliple Integrals, which might otherwlse tend to
disgulse, through thelr camplexitfy, the basic manipulations leading to &
solution. 3By using conclse matrix terminology, the problem 1eg reduced Lo
a clasgsical form of equation which cen easily be solved to yleld such
fundamental information as the critical speeds and normal modes of the
vibrating syotem. Ae In simpler, nonrotating systems, a knowledge of the
normal modes and critical frequenclies is sufficient to synthesize the
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response of the system to an aerodynamic excliltaebtion at any operating

condition.
ILTST OF SYMBOIS AND UNRITS

x blade station radlus, inches

1 blade tip radius, inches

¥y blade vibratory displacement, scalar, also matrix column, Inches

(1\] circular frequency of vlbratlon, radlasns per secand

circulaer frequency of rotatlon, radlans per second

p mass per unit length of blade, also dlagomal matrix, pound—
seconde? per inch?

B Young!s modulus, pounds per inch®

I blade secﬁion moment of inertia, scalsr, also diagonal matrix,
inches _

6 blade section angle from plane of rotatlion, radians

B blade angle at reference statlion, radlans

e twist matrix of sln 6 and cos @

Q section shear force, pounds

M section bending moment, scalsr, alsc columm matrix, pound—
inches

T centrifugal tension, scalar, also diagonal mabtrlx, pounds

F applied air force per unlt length, scalsr, also columm mabtrix,
pounds per inch

s ~integral operator, scalar, slsc matrix as defined later, inches

D derivative operator, scalar, slso matrix as defined later, incheg™L

T altered centrifugsl tension matrix, S;%T’ pound—secondg®

o) frequency matrix, seconds™=
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P frequency order, o/Q

qap frequency order matrix

c curvature, sceler, alsc column matrix, inches™

n number of blade segments

I unit metrlx

A scalar frequency parsmeter in matrix equations, seconds™® -
k modal column (moments), pound—inches

K modal row (curvetures), inches™ -

u dynamic matrix, seconds™2

J orthogonsl unit matrix, J° = —I

Bubgcripts and matrix configurations are explained in the text and
dlagrems. Metrix notation follows the conventlons generally adopted In
reference 1, where possible.

EQUATIONS OF EQUILIBRIUM

The forces and moments acting upon a differentlal blade element,
in the plane of rotation, are shown by figure 1. The differential
equatlons of equilibrium are found by separately summing horizontal
forces, wvertical forces, and moments from thlis diagram. Egquilibrium of
forces in the direction of the x—aexis is expressed by

dT + Qpx dx = O (1)

and in the y-direction, by
I\q2 =
a?pyax+dQ+Fdx+(I)npxdx+d(1%) 0 (2)
whille the momente are summed by

Qdx + dM = O (3)
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fram which may be wrltten the three differential equations of
equilibrium,

§+n2px=0 (&)

(92+m2)py+§+3'+g';('l‘%)=0' (5)
aM

Q+E=O (6)

Equation (4) may be integrated to obtain the centrifugal tension
at any point along the blade

T
T=92f px ax’ (7

X

Integrating equation (6) and substituting the expression for Q,
derived by integrating equation (5) gives

M=(92+402)fzdszpydx+/quszdx—flT§—£dx (8)
X

x x p-4 X

For vibration normal to the plane of rotatlion, the equilibrium
dlagram of figure 1 would be altered only by the change In direction
of the centrifugsl force, ﬂgpx dx, which would then be parallel to
the x—exis. This eliminates the fourth term of equation (2), for

vibration normel to the plane of rotatlon. The equation of moments
1s then

M=a?fdx£pydx+fdxf?dz—fi%§dx - (9)
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where it must be understood that the M, y, and ¥ symbols represent
different quantities from those used in equaticn (8).

Now condense the notation by Introducing the following operatlonal

symbole:
sf(x) = uéf £(x) ax

e (x) = j;f(x)

Since equatioms (8) and (9) shall henceforth be used as simultanecus
equations, introduce also subscripts p and r  to denote quantities
referred, respectlvely, to vibrations normal to the plane of rotation
(parallel centrifugal field) and in the plane of rotation (radial
centrifugal field). Equations (8) =nd (9), in reverse order, then
become

M, = PPpyy + s?F, — STD,,
(10)
M, = (@2 + oP)sPpy, + SR, — 9Dy,

Further to condense these equaetions; it is convenlent to apply a
matrix notation, Iin which . - .

]
I

o 0
L) =7 s F = ¥ s =

©
Il

5 G G s o" D 5
s T s 5= s D

0 p o7 . |0 8 0 D

The symbols, o, T, S, and D may be used either as matrices or as

metrix elements without ambiguity, since the equations in which they
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will be used will make their meanings evident. The matrlix equation 1s
thus

Mpy = cpsepypr ¥ sEFPr — SIDy,, (11)

In order to golve this equation for bending moments in terms of applied
alr loads, it 1s necessary first to eliminate the deflections,'ypr s b¥Y

sans of an addlitional moment—dsflection relatlionship.

E!

T

FLEXURAL: RIGIDITY OF A TWISTED BEAM

nding theory provides the scalar relatlion,

i~ Ea = = -

M = EIC

which applies to an wmbwlsted beam, where bending tekes place about one

of the princlpal axes of inertia. This relaetion willl be used in the
twilsted propeller blade, but it wlll be necessary to transform the

moment and curveture from the twlsted coordinates defined by the principal
axes to the untwisted pr coordinates. Denoting moments about the

minor axls.of inertia by the subscript, £ (for "flatwise" bending), and
moments sbout the major axis by e %for "edgowlse" bending), the
coordinate transformstion may be written as follows, referring to the
orientetion of axes shown in figure 2.

Mpg = BMpy

_!
where

cos & -sin 6
s8in @ cos 0
The curvature, expressed as a vector column matrix, may likewlse be

transformed in the same fashion —

Cf e = GCPr
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and these coordinate transformations may be introduced into the nent—
curvature relation, - R momen

Mpe = EIfeCfe

My = EIfeecpr

whence

Cpp = 2 (BIpe) e,

But the curveture, in untwisted coordinstes, is glven by the sscond
derivative of the deflectiom.

Cpr = Daypr

Thersfore

P = 6 (BLpe) e,

The curvatures may be integrated to cbtain deflectlons, using the
opsreator,

e (x) =fx £(x) dx
0

which, although an integral operator, differs from thé S already
defined, due to the necessity for integrating curvature and 8lope from
the origin outward. The deslred relation between moment and deflectlion
1s then : ' ’

- i

Tpr v © UTT#.{.JUMPr
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Substituting this into equation (11) ylelds

Mpr = CPSep:'j—ee_l(E:':;‘:‘e)_lel%:c‘ + 'Sanr — stop a1 (Elfe)~l%

My = (osPom e — sm-l)e—l(mfe)-laqpr + SEFPI. (12)

This 1s an Integrsl equatlon in operational -matrix form, with x as an
Independent varieble, relating elastic bending mcments to applled aero—
dynamic forces. It can be solved by any of several methods, but this
rregentation willl be conflned to the dlscusalon of a solutlon

obtalned by considering the propeller blade divided into s finlte number
of hinged segments. Thle treatment has the advantage of simplicity In
directly reducing the matrix opsrators, S, D, and D +to convenient
numerical form.

SEGMENTED BLADE

Consider the application of equation (12) to a propeller blade
divided Into n equal segments, having lts distrlbuted mass dlvided
proportlionately among the hinge points and having parallel springs
across each hinge to represent the edgewise and flatwise flexibllities.
The operators, S, D, and D_'l,' can then be deflned in series form, as
follows: :

sf(x;) = fz £(x) dx = i £(xy) ox

X3 J=1

) £(xy) — £(G43)

Df(xi) = %Ef(x) A

1 Ii i
D f(xi) = £(x) dx = 35; f(xj) Ax

o} =
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The subscript ncomencleture associated with these definitione is

descrilbed by flgure 3.

Note that, because the moments In the segmented

system are each cne station removed from the forces which they equilibrate
in accordance with equations (1), (2), and (3), the subscripte for
moments and Inertias differ from the subscripts for masses, deflectlans,
alr forces, and centrlfugal tensions at each station.

There may be wriltten n simmltaneocus equaetlms, corresponding to
the n hinge points, in place of each of the two simultanecus equations (10).
Instead of writling them separstely, they will be comblned into a single
matrix equation by using the following conventlions.

s

(30, (x0)

g My (x3)

| Yo (T2 ) |

plo—o

0

Rl

yp(x1) Fo(x1)

f,%= 5&@?,%= Py (xp)

yﬂa” Fp(xn)

[ ] . -

T, 0 -0 111-1

=loT, -0 S=axfo11-1

- —— 001-1

0 0—m

000 -1

0-00| 1oo0-0

0-0 of 4 110-0
, DL = Ax

1-0 0 111-0

0 — -1 1| 111 -1

>
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Similar definltions apply to the r—coordinates. Note that Tl 1s
truly the matrix reciprocal of D. ZEquations (10) ther are simmlteneocus
matrix equations of n—order, and equation (12) will involve second-—order
matrices with n—order matrix elemsnts, or, more concisely, equation (12)
wlll become a 2n-order matrix equatiom. As an example, the twlst matrix
now becomes '

cos 03 0 0 - .0 -sin 69 0 - - 0
0 cos 6o 0] - 0 0 —sin 8 -~ — 0
o 0 cos 93 - o - - - - —_
0 0 0 — cos 6y 0 o — — —sin 8,
e =
sin 61 0 - - o cos 6y 0 - - 0
0 gin 6o - - 0 o cog 8 — - o
0 0 - - sln 8, 0 0 — — cos 6,

and the gtiffness ma.trix is
— . =
@) © - - - o o - - -

0 p(x) - - - o ) - - -
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It is important to note that the reciprocals indicated in equation (12)
are also of simple form, @< being the transposed of @, and (Ife)"l
belng a diagonal matrlix of the reciprocals of the individual Iinertis
elements. Furthermore, DLl is the trensposed of S.

Since, In propeller vibration studles, the bending moments referred
to principsel axes are dlrectly relsted to measurable quantitles, equa-—
tion (12) shall be rewritten in the fe coordinates, whence

Mpo = 8(pe?eD2 — 8101 )0 L (BIpe )My, + 5P 1Fs, (23)

In solving this equation for resonant conditions 1t wlll be necessary
elther to choose a fixed rotatlional gpeed and find the natural frequencles
or to choose a propeller vibration order (multiple of rotational speed)
and find the critical speeds. Adophing the latter procedure and
letting P = %, write

[ 2 0 - -] o 0o - _ ]
o P - - o 0 - -
o _ o2 _ .
o= = a9
0 0 - - s+ o - - ?
0 0 - - o] (2 + 1) - -
- - I _ - - (P2 +1)
T = o°7

Also abbrevliating the alr moment colwumn,

M:Ee(a) = E;SE.@_]'Ffe

glves

Mo = 2%0(ppsPan2 — sTDL)o L (BLp,) Mipe + Meo(®)



NACA RM No. 8IOT 13

Solving for Mp,

(z - 0% (2072 — s Do (e ) g )

Mre

1

&

Letting A

u = 8(pps2er? — s L)L (ELe, ) (14)

Mpe = MMT — u)_lee(a) (15)

Numerical quantities can be substituted into equation (15), and
the bending moments caused by epplied alr moments at a predetermined
rotatlional speed and frequency order may be directly calculsted.
Another form of solutiom, obtained by the use of Sylvester®s Theorem,
wlll often be more useful. This theorem, which provides a serles
expension of & matrix polynomial, applied to equation (15) ylelds

on 2 *
Mpg = Zl —7»—_17‘1- i(x) (16)
= —

where M(r) is a normal mode moment component of L&e(a), obtained in
terme of the model row and columm associated wlth a latent root, A,
from the relations,

(17)

1}
o

(ArI — u)ky

k(ApI —u) =0 (18)

*he subsceript r -1s used henceforth to denote any of the 2n modes of
the segmented system. This preserves simllerity with matrix notation
in reference 1 and should cause no ambigulty, since the pr coordinates
do not appear egaln in the report.
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M) o (g Mo (2) (19)

Equations (17) and (18) are known alternatively as the "cherec—
teristic equations” of a matrix, u, and are typlcal of problems in
which there 1s an independent perameter, such as vibration frequency,
as well as'a group of coordinate dependent varisbles. The "latent roots,"
or values of the perameter for which there 1ls a solutlon, and the
coordinate values assoclated with each of these rools are frequently the
solution desired, hence many classical methods are availeble for
numerical solutions. In the case of the vlbrating propeller blade
represented by the characteristic equation (17) , the lmtent roots of
the matrix, u, are critical speeds ?strictly, reciprocals of critical
speeds squared) and the modal columms, k,, are the bending-moment

distributions corresponding to the natural modes for the critical speeds.
The modal rows, Ky, defined by equation (18), are the corresponding
curvature distributions, as will be shown.

Kumerical methods for determining the modal rows, columms, and
roots are described in detall In reference 1. In the case at hand, the

labor involved can be reduced by deriving a relation between the modal
row asnd colum, first forming the transposed of equation (17).

kr'(}\,r'[ - u') =0

Equation (1h) stated,

u = o(ppPer? — sL)e (rge)

Since
6'=8—1, S’:D—l,%'=q)p’ p'=p’ ™ =1

and

QEIfe )_JD ' = (EIge) "
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it follows that

gﬂ
n

(EIp,) e (¢Ps2pp—€ - s-rn—l) gl

(EIfe)_l'l (EIfe)

whence
MENCRNCHRE:
and.
kpt (BIpe) (AT — u)(ELge) = 0
or

! BLpe) T (T — u) = 0
Thus, the modal row 1ls related to the modal columm by the equation,
fp = kp* (Blpe) ™ (20)

which shows that the modal row 1s a curvature distribution, since the
modal column, from which 1t is here derived, setisfles the equetion for
the elastic moment.

EFFECT OF BLADE ANGELE ON CRITICAI: SPEEDS

For smaell chenges in blade angle, the changes In critical speeds
can be found wlthout recalculating wu for a new blade angle. A partial
derivative of the characteristic equation (17) may be formed as follows:

(A I —ule, =0

3 d
Q%T—I - g%‘)kr + (ApI -u)a—zﬁ =0
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Premultiplylng by K,, the second term vanishes, leaving

Srp. _duY, _
K’(BBI 38 kyp =0

o
2 G, g;-tr (21)

whence

Now examine u and find ites derivative.
u = o(p,8Pe02 — sro)e ™ (BIee) L

.g% - _-gg (52002 — s D) (mr, )2

gt -
+ opys2pp2 — STD_l)_SB— (Ezee) 2 (22)
Since
cog B -sin 6 - cbs 0 a8in 9'
8 = s 8~ =
sin 8 cos @ —ain @6 cos @
and d6 = df
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Iet
o I
J =
- O
then
—1
o8 _
@@ = J@a, — =8 lJ'
3B »

Substituting these derivatives into equation (22),

%:5 =~ + u(Elee )T (B )

Premultiply by K. and. postmiltiply by k., so that

vy B, = e,y + Ty )T ey

and by mseking use of the characterigtic equation again, u 1s eliminated.

e Doy = Pty ¢ iy (BT (Epe) ey
The second term cen be simplified by noting, from equation (20),
that : .
Kr' = (er)—lkr
and

k—_c-' = ‘&-(EIfe)
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whence

K S5 as =i, = M (ReTky + TR

But, since thie 1s & scalar equation, the elements In eny term may be
transposed, so that

kr‘JK'.r' = —E&‘Jk:r

and
gr~§§ k., = —2Apkpdky

whence, equation (21) beccmes

9
a:f ap (o) R Tk (23)
As a lest refinement, note that
- 2
M, A, . 9%

oB 9B -7 nrII J8

2
o0, __ 1 . _ egre("rkr)_ln i
o xrz 30 T
oq,, =
ﬂ_r gﬁ" = (Rpkep) | (24)

This relationshlp makes it possible to make use of a solution,
obtalned for asny arbltrary blade angle, to find the nature of the varia—
tion In critical speed with variations in blade angle, at least for a
small renge in angle. It 1s Interesting to put this equation Into an
integral form for the dlstributed system, by noting the meanings of the
operations indicated by equation (24). The scalar, Kk, 18 a sum of

r
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the products of each pair of curvatures and moments and hence represents
twice the strain energy in a naturel mode, so that, in terms of scalar
moment elements, Mp and M., there may be written

%Efzgdx+fz$—;zdx

0 0o

Furthermore, the operator, J, has the effect of interchanging flatwlse
and edgewise (f and o subscrip'b) quantitles, so that

and the chenges In criltical speed may therefore be expressed as a function
of a small change in blade angle by the following scalar equetion of
definite integrals eveluated at the critical speed:

ZM_EM ZMM,E
fo ﬁf—edx L T d.xaB o)
1 1 2
ﬂr /; Ef—]:h+£ 1'--l-'l—d:x:

This useful relationship might have been obtained by other msthods,
but the presentation here glven has seemed the most strelghtforwerd to
the writer.

RNUMERTCAT, GOMPUTATTONS

The foregolng analysis hasg provided several eguations in matrix form
which may be employed dlrectly in numerical work. After forming the
basic arrays of physical quantities and cawbining them to obtain the
matrix, u, and the columm, Mfe(a'), equation (15) may be solved for the
vibratory bending moments at the n blade stations by methods such as
proposed by Altken (reference 2) in order to find the nonrescnant regponge
of the propeller to the applied air forces at a glven frequency order.
If the critical speeds are desired, the characteristic equation (17}, may
be solved by repeated premultlplication of an arbitrary columm, as
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described in reference 1, and by this means the bending-moment distribu~—
tion of the normal mode 1s alsoc obtained. The normal mode curvature
distrlbution may be found by similar postmuliiplicatiion of an arbitrary
row, according to the characteristic equation (18), or directly from the
moment columm, by equatlon (20). The critical speeds, normal mode
colums and rows, and the applied alr moments may be gathered together in
equation (16) in order to express the resultant vibratory bending momenta
ag functions of rotational speed.

For numericel purposes, it 1s often convenient to expand equation (16)
in a form whlch will converge more repidly, thus reqpiring the calculation
of fewer mode shapes. It 1s easlly shown that

- Mgl 5wl (26)
r=

which follows from observing that

& (r) (a)
lim Mfe EE:: M = Mfe
P—0 r=1

(r—<)

Since the matrix, u, Includes an arbitrary blade angle, the
numerical solution in terms of normal modes and frequencies ylelds
complete informatlion at a given frequency order only for a aingle blade
angle; however, for emall variastions in blade angle, equation (2k) may
be used to determine the effect om critlcal speeds wlithout going through
a completely new solution.

In computing critical speeds for a fixed vibration order, 1t.should
be noted that same of the 2n latent roots, An, may be negative. In the

particular case of first—order vibratlons, not more than one of these
roots will, in general, be positive. The occurrence of negatlive roots
implies Imeginery critical speeds, which are difficult to plcture as such,
but may appear more loglcal if treated as the positive criticael speeds
which would exist were the cemtrifugal forces and inertila forces to be
reversed. This condition 1s probably more easily understandeble for the
speclal cage of P = O, when the negative roots correspond to critical
gpeeds for seversl modes of buckling under reversed centrifugal forces.
Figure U4 presents a sketch of the natural frequency spectrum of a propeller
ag a function of rotational speed, using frequency squered along each
axis, so that the negetive roots appear as intersections in the third
quadrant. . .
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STODOLA'S METHOD

In the calculation of nstural frequencies in problems involving the
vibration of beams, the Stodola process 1s often employed. This is
normally a method by which a deflection curve is assumed and uséd to
calculate the inertia loading, which is then successively integrated
along the length of the beam In order to obtaln the shear, moment, slope,
and a new deflection shape. The new deflection curve 1s then carried
through the same process ageln, and repeated lteratlons finally converge
on the true mode shspe, wlth an Increase 1n amplitude through sach itera—
tlon in proportion to the lowest natural frequency. After solving for

the lowest mode and frequency, higher modes can slso be found, but since
there 1s a tendency for the fundamental mode to became more prominent
through each iteretiomn, 1t 1s necessary to employ the orthogonality
relationg in order to eliminste the unwented mode or modes in sach

higher mode solution.

The Stodola process could also be used with an sssumed moment distribu—
tion, carrying through each serles of Integratlions to obtain an Improved
moment mode shape, emnd 1t 1s Interesting to note that the solutlion of the
matrix equation (17) for its latent roots and modsl columms 1s very closely
related to this type of Stodola process. Premultiplication of an
arbitrary moment columm by u, upon examination of the definition of wu,
equation (14) s includes In a lumped form the several steps of successlively
Integrating the curvature, slope, loading, and shear, including centrif—
ugel tension effects, to obtain an Improved moment distrlbution, and the
comparison of successive mode shapes, after convergence has been attained,
yields the lowest nabturel frequency in the form of the dominant latent
root. The process of modifylng the u—matrix in order to eliminate the
dominant mode end permit solution for the subdominant root, when care—
fully examined is found to provide & new metrlix which represents the same
serles of operatlons during each lteration, wlth the additlon of an
"orthogonalizing" step included in each iteration. Use of the Stodola
process in this mamner has long since been successfully accomplished at
least in the somewhat simplified case of a nonrotating untwisted beam
(reference 3). The rotating, twisted propeller blade requires numericel
calculatlions of larger volume and hence greater dlfflculty, but no new
principles are Involved.

The matrix method of calculation, therefore, ls not baslcally novel,
but represents & technique for orgenizing in an efficlent msnner the
miltitude of operations Involved 1n a largs—scale numerical calculatlion.
One of its strongest attractlons 1s thet it permlits & proper perspective
t0o be malntained not only In the analytical phases of the problem butb
also throughout the numerical work.
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Figure 1,- Equilibrium of forces and moments on a differential element~-in
plane of rotation (radial centrifugal fleld).
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Figure 2,- Orientation of twisted (fe) coordinates in relation to untwisted
(pr) coordinates,
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Figure 3.- Nomenclature of segmented blade,
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Figure 4.- Frequency spectrum of rotating propeller.






